

KARNATAK UNIVERSITY, DHARWAD ACADEMIC (S&T) SECTION

ಕರ್ನಾಟಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಧಾರವಾಡ ವಿದ್ಯಾಮಂಡಳ (ಎಸ್&ಟಿ) ವಿಭಾಗ

Tele: 0836-2215224 e-mail: academic.st@kud.ac.in Pavate Nagar,Dharwad-580003 ಪಾವಟೆ ನಗರ, ಧಾರವಾಡ – 580003

NAAC Accredited 'A' Grade 2014

website: kud.ac.in

No. KU/Aca(S&T)/JS/MGJ(Gen)/2023-24/59

Date: 04 09 2023

ಅಧಿಸೂಚನೆ

ವಿಷಯ: 2023-24ನೇ ಶೈಕ್ಷಣಿಕ ಸಾಲಿನಿಂದ ಎಲ್ಲ ಸ್ನಾತಕ ಪದವಿಗಳಿಗೆ 5 ಮತ್ತು 6ನೇ ಸೆಮೆಸ್ಟರ್ NEP-2020 ಪಠ್ಯಕ್ರಮವನ್ನು ಅಳವಡಿಸಿರುವ ಕುರಿತು.

ಉಲ್ಲೇಖ: 1. ಸರ್ಕಾರದ ಅಧ್ಯನ ಕಾರ್ಯದರ್ಶಿಗಳು(ವಿಶ್ವವಿದ್ಯಾಲಯ 1) ಉನ್ನತ ಶಿಕ್ಷಣ ಇಲಾಖೆ ಇವರ ಆದೇಶ ಸಂಖ್ಯೆ: ಇಡಿ 104 ಯುಎನ್ಇ 2023, ದಿ: 20.07.2023.

2. ವಿದ್ಯಾವಿಷಯಕ ಪರಿಷತ್ ಸಭೆಯ ನಿರ್ಣಯ ಸಂಖ್ಯೆ: 2 ರಿಂದ 7, ದಿ: 31.08.2023. 3. ಮಾನ್ಯ ಕುಲಪತಿಗಳ ಆದೇಶ ದಿನಾಂಕ: 04 09 2023

ಮೇಲ್ಕಾಣಿಸಿದ ವಿಷಯ ಹಾಗೂ ಉಲ್ಲೇಖಗಳನ್ವಯ ಮಾನ್ಯ ಕುಲಪತಿಗಳ ಆದೇಶದ ಮೇರೆಗೆ, 2023–24ನೇ ಶೈಕ್ಷಣಿಕ ಸಾಲಿನಿಂದ ಅನ್ವಯವಾಗುವಂತೆ, ಎಲ್ಲ B.A./ BPA (Music) /BVA / BTTM / BSW/ B.Sc./B.Sc. Pulp & Paper Science/ B.Sc. (H.M)/ BCA/ B.A.S.L.P./ B.Com/ B.Com (CS) / BBA & BA ILRD ಸ್ನಾತಕ ಪದವಿಗಳ 5 ಮತ್ತು 6ನೇ ಸೆಮೆಸ್ಟರ್ಗಳಿಗೆ NEP-2020ರ ಮುಂದುವರೆದ ಭಾಗವಾಗಿ ವಿದ್ಯಾವಿಷಯಕ ಪರಿಷತ್ ಸಭೆಯ ಅನುಮೊದಿತ ಕೋರ್ಸಿನ ಪಠ್ಯಕ್ರಮಗಳನ್ನು ಕ.ವಿ.ವಿ. ಅಂತರ್ಜಾಲ <u>www.kud.ac.in</u> ದಲ್ಲಿ ಭಿತ್ತರಿಸಲಾಗಿದೆ. ಸದರ ಪಠ್ಯಕ್ರಮಗಳನ್ನು ಕ.ವಿ.ವಿ. ಅಂತರ್ಜಾಲದಿಂದ ಡೌನಲೋಡ ಮಾಡಿಕೊಳ್ಳಲು ಸೂಚಿಸುತ್ತ ವಿದ್ಯಾರ್ಥಿಗಳ ಹಾಗೂ ಸಂಬಂಧಿಸಿದ ಎಲ್ಲ ಬೋಧಕರ ಗಮನಕ್ಕೆ ತಂದು ಅದರಂತೆ ಕಾರ್ಯಪ್ರವೃತ್ತರಾಗಲು ಕವಿವಿ ಅಧೀನದ/ಸಂಲಗ್ನ ಮಹಾವಿದ್ಯಾಲಯಗಳ ಪ್ರಾಚಾರ್ಯರುಗಳಿಗೆ ಸೂಚಿಸಲಾಗಿದೆ.

ಅಡಕ: ಮೇಲಿನಂತೆ

ಗೆ,

ಕರ್ನಾಟಕ ವಿಶ್ವವಿದ್ಯಾಲಯದ ವ್ಯಾಪ್ತಿಯಲ್ಲಿ ಬರುವ ಎಲ್ಲ ಅಧೀನ ಹಾಗೂ ಸಂಲಗ್ನ ಮಹಾವಿದ್ಯಾಲಯಗಳ ಪ್ರಾಚಾರ್ಯರುಗಳಿಗೆ. (ಕ.ವಿ.ವಿ. ಅಂರ್ತಜಾಲ ಹಾಗೂ ಮಿಂಚಂಚೆ ಮೂಲಕ ಬಿತ್ತರಿಸಲಾಗುವುದು)

ಪ್ರತಿ:

- 1. ಕುಲಪತಿಗಳ ಆಪ್ತ ಕಾರ್ಯದರ್ಶಿಗಳು, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.
- 2. ಕುಲಸಚಿವರ ಆಪ್ತ ಕಾರ್ಯದರ್ಶಿಗಳು, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.
- 3. ಕುಲಸಚಿವರು (ಮೌಲ್ಯಮಾಪನ) ಆಪ್ತ ಕಾರ್ಯದರ್ಶಿಗಳು, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.
- 4. ಅಧೀಕ್ಷಕರು, ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆ / ಗೌಷ್ಟ್ / ಜಿ.ಎ.ಡಿ. / ವಿದ್ಯಾಂಡಳ (ಪಿ.ಜಿ.ಪಿಎಚ್.ಡಿ) ವಿಭಾಗ, ಸಂಬಂಧಿಸಿದ ಕೋರ್ಸುಗಳ ವಿಭಾಗಗಳು ಪರೀಕ್ಷಾ ವಿಭಾಗ, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.
- 5. ನಿರ್ದೇಶಕರು, ಕಾಲೇಜು ಅಭಿವೃದ್ಧಿ / ವಿದ್ಯಾರ್ಥಿ ಕಲ್ಯಾಣ ವಿಭಾಗ, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.

KARNATAK UNIVERSITY, DHARWAD

B.Sc. in Chemistry

Syllabus With Effect From 2023-24

DISCIPLINE SPECIFIC CORE COURSE (DSCC)

FOR SEM V &VI,

SKILL ENHANCEMENT COURSE (SEC) FOR SEM V SEM

AS PER NEP - 2020

Karnatak University, Dharwad B.Sc.in Chemistry Effective from 2023-24

ı .	Type of	Theory/Pr			Instructi	Total	Duration		Marks	6	its
Sem.	Course	actical	Code	CourseTitle	on hour/we ek	hours / sem	Of Exam	Formati ve	Summa tive	Total	Credits
	DSCC-9	Theory	035 CHE 011	Chemistry (Theory) -IX	04hrs	56	02hrs	40	60	100	04
	DSCC-10	Practical	035 CHE 012	Chemistry (Practical) - X	04hrs	56	03hrs	25	25	50	02
V	DSCC-11	Theory	035 CHE 013	Chemistry (Theory) -XI	04hrs	56	02hrs	40	60	100	04
	DSCC-12	Practical	035 CHE 014	Chemistry (Practical) - XII	04hrs	56	03hrs	25	25	50	02
	Other subject										04
	Other subject										04
	Other subject										04
	SEC-3	Practical	035 CHE 061	Employability skills in Chemistry	04hrs	56	03hrs	25	25	50	02
				Total							26
VI	DSCC-13	Theory	036 CHE 011	Chemistry (Theory) -XIII	04hrs	56	02hrs	40	60	100	04
	DSCC-14	Practical	036 CHE 012	Chemistry (Practical) - XIV	04hrs	56	03hrs	25	25	50	02
	DSCC-15	Theory	036 CHE 013	Chemistry (Theory) -XV	04hrs	56	02hrs	40	60	100	04
	DSCC-16	Practical	036 CHE 014	Chemistry (Practical) - XVI	04hrs	56	03hrs	25	25	50	02
	Other										04
	subject										0.4
	Other subject										04
	Other subject										04
	Internship-1		036 CHE 091	Chemistry Internship				50	0	50	02
				Total	•	•					26

Karnatak University, Dharwad B.Sc. Chemistry

Programme Specific Outcomes (PSO):

On completion of the 03 years Degree in Chemistry students will be able to:

- Demonstrate, solve and understand the major concepts in all the disciplines of chemistry.
- Provide students with broad and balanced knowledge and understanding of key chemical concepts.
- Understand practical skills so that they can understand and assess risks and work safely and competently in the laboratory.
- To apply standard methodology to the solutions of problems in chemistry.
- Provide students with knowledge and skill towards employment or higher education in chemistry or multi-disciplinary areas involving chemistry.
- Provide students with the ability to plan and carry out experiments independently and assess the significance of outcomes.
- Develop in students the ability to adapt and apply methodology to the solution of unfamiliar types of problems.
- Employ critical thinking and the scientific knowledge to design, carry out, record and analyze the results of chemical reactions.
- To prepare students effectively for professional employment or doctoral degrees in chemical sciences.
- To cater to the demands of chemical industries of well-trained graduates.
- To build confidence in the candidate to be able to work on his own in industry and institution of higher education.
- To develop an independent and responsible work ethics.

B.Sc. Semester–V

Discipline Specific Course (DSC) -9

Course Title: Chemistry (Theory) IX Course Code : 035CHE011

Type of	Theory		Instruction	Total No.of	Duration	Formative	Summative	Total
Course	/Practical	Credits	hour per week	Lectures/Hours	of Exam	Assessment	assessment	Marks
				/Semester		Marks	Marks	
DSCC-9	Theory	04	04	56hrs.	2hrs.	40	60	100

Course Outcomes (COs): At the end of the course students will be able to:

- CO1: Explain theory of coordination compounds, IUPAC system of nomenclature, calculation of EAN, Isomerism in coordination compounds and Valence bond theory
- CO2: Understand Metal carbonyls: Types, nomenclature, preparation, and properties. 18 electron rule, Structure of mononuclear and binuclear carbonyls using VBT, Preparation and structure of methyl lithium, Zeiss salt and ferrocene and industrial applications of organometallic compounds.
- CO3: Study aromaticity of 5-membered and six member rings containing one hetero atom, synthesis of pyrrole, furan, pyridine, mechanism of electrophilic substitution reactions of furan, pyrrole and pyridine. Indole, quinoline and isoquinoline.
- CO4: Describe constitution of hygrine, coniine and nicotine. Classification and biological significance, source and structure of Vitamin A, Vit-B1, B2, B6, K1 and C and functions and diseases by the deficiency of hormones.
- CO5: Explain the ionization of electrolyte, migration and transport number of ions and its determinations. Enable to explain the conductivity of ions, variation with dilution, differentiating specific, equivalent and molar conductivity. Describe the application of conductivity measurement for concentration, dissociation of weak electrolyte.
- CO6: Explain the degree of dissociation for strong and weak electrolytes and their conductivity with concentrated and dilute solution.
- CO7: Explain the laws of absorption and photochemistry. Quantum yield significance. Explain the photosensitization and photophysical processes.
- CO8: Aware about the importance of energy sources, alternative energy from various sources. Explain about the working principle and applications of different batteries and fuel cells.
- CO9: Understand Basic definitions, degree of polymerization, classification of polymers- Natural and Synthetic polymers, Organic and Inorganic polymers, thermoplastic and thermosetting polymers.
- CO10: Understand about molecular weight in simple and polymer molecules. Explain about the various

methods applied to determine molecular weight of polymers.

Unit	Title: Chemistry (Theory) IX	56 hrs/
		Sem
	Coordination chemistry-I	14 hrs
Unit I	Classification of ligands. Werner's theory of coordination compounds with reference	
	to Cobalt ammine complexes. Methods of detection of complex formation. IUPAC	
	system of nomenclature. Sidgwick's theory and calculation of EAN in different	
	complexes. Isomerism in coordination compounds (ionisation, hydrate, linkage,	
	coordination, coordination-position, geometrical and optical) with respect to	
	coordination number 4 and 6. Valence bond theory, inner and outer orbital	
	complexes of Cr, Fe, Co, Ni and Cu with coordination number 4 and 6. Limitations	
	of VBT. Chelates and their applications. (8 hrs)	
	Organometallic compounds	
	Definition and classification with appropriate examples. Concept of hapticity of	
	organic ligands with examples. Metal carbonyls: Types, nomenclature, preparation,	
	and properties. 18-electron rule. Structure of mononuclear and binuclear carbonyls	
	of Cr, Mn, Fe, Co and Ni using VBT. π -acceptor behavior of carbon monoxide.	
	Preparation and structure of methyl lithium, Zeiss salt and ferrocene. Industrial	
	applications of organometallic compounds. (6 hrs)	
	Heterocyclic Compounds	14 hrs
Unit II	Classification and Nomenclature, Aromaticity of 5-membered and six member rings	
	containing one hetero atom, synthesis of pyrrole, furan (Paal-Knorr synthesis),	
	pyridine (Hantzsch synthesis), Mechanism of Electrophilic substitution reactions of	
	furan, pyrrole and pyridine, (Formylation, Nitration, Bromination, Friedel Craft's	
	reaction). Indole (Fischer's synthesis) quinoline (Skraup's synthesis)	
	aminoquinoline(Bischler-Napieraskisynthesis). (5 hrs)	
	Alkaloids:	
	Classification, extraction, general properties, Hoffman's exhaustive methylation.	
	Constitution and synthesis of Hygrine, Coniine and Nicotine. (4 hrs)	
	Vitamins Classification and biological significance, sources and structure of Vitamin A, Vit-	
	B1 (thiamine), Vit-B2 (riboflavin), Vit-B6 (pyridoxine), tocopherol (Vit-E), Vit-K1	
	(phylloquinone), Vit-C (ascorbic acid). Synthesis of Vitamin C from D-glucose.	
	Hormones: Definition, classification with examples and functions. Diseases caused	
	due to deficiency of hormones. Synthesis of Adrenaline. (5 hrs)	

	Electrochemistry-I	14 hrs
	Arrhenius theory of electrolytic dissociation and its limitations. Migration of ions -	
Unit III	Transport number, Determination of transport number by Hittorf's and Moving	
	boundary methods. Problems on transport number. Kohlrausch's law and its	
	applications.	
	Conductivity: Conductance of an electrolyte, specific conductance, equivalent	
	conductance and molar conductance. Conductivity cell, cell constant and its	
	importance. Applications of conductivity measurementsin various acid base	
	titrations. Advantages of conductometric titration. Determination of solubility and	
	solubility product of sparingly soluble salts. Determination of dissociation constant	
	of weak acid.	
	Theory of strong electrolytes: Degree of dissociation, Ostwald's dilution law and	
	its limitations. Debye-Huckel theory of strong electrolytes, relaxation effect,	
	electrophoretic effect, Debye-Huckel-Onsager equation and its significance (no	
	derivation). (8 hrs)	
	Photochemistry	
	Absorbance, transmittance, Beer-Lambert's law and its limitations, Calculation of	
	molar extinction coefficient. Laws of photochemistry - Grotthus-Draper law, Stark -	
	Einstein's law of photochemical equivalence, differences between photochemical	
	and thermal reactions. Quantum yield - definition, reasons for high and low quantum	
	yields with examples. Determination of quantum yield by thermo-couple method and	
	using chemical actinometer. Photosensitization with examples.	
	Photophysical process - definition, fluorescence, phosphorescence, inter system	
	crossing. Chemiluminescence and bioluminescence with examples, Difference	
	between photophysical and photochemical process. (6 hrs)	
	Solutions:	14 hrs
Unit IV	Introduction-liquid-liquid mixtures (miscible, immiscible and partially miscible),	
	Raoult's law-definition, equation. Duhem – Margules equation and its applications,	
	Principle of distillation of binary miscible liquids-Konowaloff's rule, derivation.	
	Distillation of binary miscible liquids-type-I, II and III solutions.Azeotropes-	
	definition, minimum and maximum boiling point azeotropes. Immiscible liquids-	
	definition, Steam distillationPartially miscible liquids-definition, conjugate	
	solutions, CST, types I (phenol-water system), II (triethylamine-water system) and	
	III (nicotine-water system). Solutions of solid in liquids, solid solutions (qualitative	
	treatment). (5 hrs)	

Phase Equilibria

Concept of phases, components and degrees of freedom, derivation of Gibbs Phase Rule for nonreactive and reactive systems; Clausius-Clapeyron equation and its applications to solid-liquid, liquid-vapor and solid-vaporequilibria, phase diagram for one component systems (H₂O and S), with applications. Phase diagrams for two component systems of solid-liquid equilibria involving eutectic, congruent and incongruent melting points. (5 hrs) definition, polymerization **Polymers:** Introduction, degree of and classification.Mechanism of addition and condensation polymerization: Molecular weight of polymers: Number average molecular weight and weight average molecular weight, Determination of molecular weight by Viscometry, and Osmotic pressure method. (4 hrs)

Formative Assessment for Theory						
Assessment Occasion/type	Marks					
Internal Assessment Test 1	10					
Internal Assessment Test 2	10					
Quiz/Assignment/Small Project	10					
Seminar	10					
Total	40 Marks					
Formative Assessment as per g	uidelines.					

B.Sc. Semester–V

Discipline Specific Course(DSC)-10

Course Title: Chemistry (Practical) X Course Code:035CHE012

DSCC-10	Practical	02	04	56hrs.	3hrs.	25	25	50
				/Semester		Marks	Marks	
Course	/Practical	Credits	hour per week	Lectures/Hours	of Exam	Assessment	assessment	Marks
Type of	Theory		Instruction	Total No.of	Duration	Formative	Summative	Total

Course Outcomes (COs): At the end of the course, students will be able to:

- CO1: Understand the qualitative analysis of inorganic mixtures containing two anions and two cations containing carbonates and bicarbonate, two halides, borate, phosphate, ferrous/ ferric salts & less common element (Mo, Ce or Li).
- CO2: Perform the various steps involved in Gravimetric Analysis of metal ions.

1. Semi micro qualitative analysis of inorganic mixtures containing two anions and two cations

- a) Mixture containing carbonate and bicarbonate
- b) Mixture containing two halides
- c) Mixture containing borate
- d) Mixture containing phosphate
- e) Mixture containing ferrous /ferric salt
- f) Mixture containing less common element (Mo, Ce or Li)

2. Gravimetric Analysis:

1. Deter mination of barium as BaSO₄. 2. Deter mination of iron as Fe₂O₃ 3. Deter mination of aluminum as Al₂O₃ 4. Deter mination of aluminum (III) using oxine . 5. Separ ation of Fe (II) and Ni (II) from the solution. Determination of Fe (II) gravimetrically and Ni (II) volumetrically. 6. Separ

ation of Fe (II) and Ni (II) from the solution. Determination of Ni (II) gravimetrically and Fe (II) volumetrically.

Examination

In a batch of ten students in the practical examination, five students may be given Semi micro qualitative analysis and other five students may be given gravimetric estimation. Selection of experiments may be done by the students based on the picking up of chits. Viva questions may be asked on any of the experiments prescribed in the practical syllabus.

Distribution of Marks:

For Semi micro qualitative analysis:

Preliminary test and presentation - 03 marks

Anions (group test + C.T. + ionic reactions) $(1+1+1) \times 2 = 6$ marks.

Cations(group test + C.T. + ionic reactions) $(1+2+1) \times 2 = 8$ marks.

Journal - 3 marks, Viva-voce - 5marks, Total = 25 marks.

Gravimetric Determination:

Accuracy-12marks, Technique and Presentation-2marks Calculation and reactions 3 marks, Journal-3 marks, Viva-Voce-5 marks, Total=25 marks.

Deduction of Marks for accuracy:

±6mg -12 marks, ± 8mg-10 marks, ±10mg -8 marks, ±12mg-06 marks, ±14mg-04 marks, ±16mg-02marks, above ±16 mg -zero marks.

Books recommended:

- 1. Vogel's Qualitative and quantitative Inorganic Analysis, G. Svehla, 7th Ed, Longman (2001).
- 2. Advanced Practical Chemistry, Pragathi, Publications, Jagadamba Singh,
- 3. Advanced Practical Inorganic Chemistry, Gurdeep Raj, Goel Publishing House, Meerut

B.Sc. Semester–V

Discipline Specific Course(DSC)-11

Course Title: Chemistry (Theory) XI Course Code:035CHE013

DSCC-11	Theory	04	04	56hrs.	2hrs.	40	60	100
				/Semester		Marks	Marks	
Course	/Practical	Credits	hour per week	Lectures/Hours	of Exam	Assessment	assessment	Marks
Type of	Theory		Instruction	Total No.of	Duration	Formative	Summative	Total

Course Outcomes (COs): At the end of the course, students will be able to:

- CO1: Understand the types, theory,technique and applications of separation techniques like solvent extraction and chromatography,dyes and colors used in day-to-day life.
- CO2: Know color and constitution, classification, synthesis and applications of different types of dyes.
- CO3: Define spectroscopy and different regions of electromagnetic spectrum.Basics of UV/visible spectroscopy. Different kind of transitions that can take place within molecule
- CO4: Explain the origin of IR spectrum.Describe different types of vibrational modes of simple molecules.Explain the principles of different types of IR instruments.Outline different applications of UV, IR.
- CO5: Importance Air pollution and Water Pollution, techniques for measuring water pollution, effluent treatment plant, water purification methods, sludge disposal, disposal of nuclear wastes and Water quality parameters for waste water, industrial water and domestic water. Understand about types of soil, physical, chemical and biological properties of soil, soil organisms, micro and macronutrients
- CO6: Know about Chemical explosives and Rocket propellants.

Unit	Title: Chemistry (Theory) XI	56 hrs/					
		sem					
	Solvent extraction: Types, theory and mechanism. Extraction by ion-association and	14 hrs					
T La :4 T	Chelation. Synergistic extraction, techniques and applications. Determination of						
Unit I	Uranium using oxine. (3hrs)						
	Chromatography: Classification, techniques and development of chromatograms.						
	Paper chromatography: Theory, R_f value, factors affecting R_f value and its						

	calculations, techniques and applications. Separation of Pb^{2+} , Ag^+ and Hg_2^{2+} and	
	calculation of R _f value.	
	Column chromatography: Theory, techniques and applications. Separation of	
	methylene blue and malachite green.	
	Thin-layer chromatography: Superiority of TLC, theory methodologyand	
	applications	
	Ion exchange chromatography: Properties and types of ion exchangers. Action of	
	cation and anion exchange resins, techniques and applications. Separation of amino	
	acids from its mixture.	
	Gas Chromatography and High-Performance Liquid Chromatography:	
	Principles and applications. (11hrs)	
	Ultraviolet Spectroscopy:	14 hrs
Unit II	Types of electronic transitions, chromophores and auxochromes, bathochromic shift	
	and hypochromic shift, intensity of absorption, Woodward-Fieser rules for	
	calculating λ_{max} Conjugated dienes such as alicyclic, homoannular and	
	heteroannulardienes. Applications of UV spectroscopy. (5 hrs)	
	Infrared Spectroscopy:	
	Introduction to infrared spectroscopy, intensity of absorption band, position of	
	absorptions, C-H, >C=O, O-Hand N-H absorption bands with explanation for	
	variation in stretching frequencies. Identification of H- bonding in alcohols, phenols	
	and carboxylic acids using IR spectroscopy. (5 hrs)	
	Dyes:	
	Theory, color and constitution, classification, mordant and wet dyes, synthesis and	
	applications of congo red, malachite green, phenolphthalein, eosin and indigo.	
	Dyes used in food and their safety, organic pigments with examples. (4 hrs)	
	byes used in rood and then surety, organic pigments with examples. (4 ms)	
	Molecular Spectroscopy:	14 hrs
	Interaction of electromagnetic radiation with matter, electromagnetic spectrum.	
Unit III	Rotational Spectroscopy:	
	Rotation of molecules, diatomic: rigid rotator, selection rule: derivation for	
	Rotation of molecules, diatonnic. figur fotator, selection rule. derivation for	
	expression of energy and bond length (HCl), problems on bond length, polyatomic	

	Vibrational Spectroscopy:	
	Vibrating diatomic molecules - energy of diatomic molecules, force constant,	
	vibrational spectra: harmonically vibrating diatomic molecules (HCl) and	
	anharmonicity, Morse potential, dissociation energies, fundamental frequencies,	
	overtones, hot bands, degrees of freedom for polyatomic molecules, modes of	
	vibration, concept of group frequencies, and problems on force constants. Vibration-	
	rotation spectroscopy: diatomic vibrating rotator, P, Q, R branches.	
	Raman spectra: Classical theory, Rotational Raman spectroscopy (Linear and	
	symmetric top molecules for S and R branch), Vibrational Raman spectroscopy;	
	vibration - rotational Raman spectra (Rotational fine structures), complementary of	
	Raman and IR.	
	Electronic Spectroscopy:	
	Diatomic molecules: Born- Oppenheimer approximation, vibrational course	
	structure of electronic transition and intensity, Franck - Condon principle, pre-	
	dissociation, 'g' and 'u' transitions and their applications in organic molecules.	
	Environmental Chemistry	14 h
Unit IV	Air pollution: Review of major regions of atmosphere. Chemical and	
	photochemical reactions in the atmosphere. Sources, effects and control measures	
	of air pollutants (CO, CO ₂ , NO _x , SO _x and H ₂ S). Methods of determination of CO,	
	NO _x and SO _x .	
	Water Pollution: Water pollutants and their sources. Techniques for measuring	
	water pollution. Effluent treatment plant (primary, secondary and tertiary	
	treatment).Water purification methods (reverse osmosis, electrodialysis and	
	ion- exchange) Sludge disposal. Industrial waste management. Disposal of nuclear	
	wastes. Water quality parameters. (7 hrs)	
	Soil chemistry: Types of soil, physical, chemical and biological properties of soil,	
	soil organisms, nitrogen and sulphur transformation. A brief account of micro- and	
	macronutrients (sources and importance) Determination of pH, alkalinity, total	
	organic matter, Ca (II) and Mg (II) ions in soil samples. (4 hrs)	
	organic matter, Ca (II) and Mg (II) ions in soil samples.(4 hrs)Chemical explosives: Preparation and explosive properties of lead azide, PETN,	

Formative Assessment for Theory						
Assessment Occasion/type	Marks					
Internal Assessment Test 1	10					
Internal Assessment Test 2	10					
Quiz/Assignment/Small Project	10					
Seminar	10					
Total	40 Marks					
Formative Assessment as per g	uidelines.					

B.Sc. Semester–V

Discipline Specific Course (DSC) -12

Course Title: Chemistry (Practical) XII

Course Code:035CHE014

Type of	Theory		Instruction	Total No. of	Duration	Formative	Summative	Total
Course	/Practical	Credits	hour per week	Lectures/Hours	of Exam	Assessment	assessment	Marks
				/Semester		Marks	Marks	
DSCC-12	Practical	02	04	56hrs.	3hrs.	25	25	50

Course Outcomes (COs): At the end of the course, students will be able to:

- CO1: Understand to apply the knowledge of conductivity, emf and absorbance to performing the experiments.
- CO2: Acquire skills for handling analytical instruments like potentiometer, conductometer, pH meter & colorimeter.

Expt. No,	Title: PHYSICAL CHEMISTRY EXPERIMENTS	56 hrs/ Sem
1	Determination of concentration of HCl using standard NaOH solution by conductometric titration.	
2.	Determination of concentration of CH_3COOH using standard NaOH solution by conductometric titration.	
3	Determination of concentration of HCl using standard NaOH solution by potentiometric titration.	
4	Determination of concentration of FAS using standard KMnO ₄ solution by potentiometric titration.	
5	Verification of Beer- Lambert law by colorimetric method and calculation of molar extinction coefficient of Cu^{2+} .	
6	Determination of critical solution temperature of two partially miscible liquids (water and phenol).	
7	Determination of equivalent conductance of strong electrolyte (NaCl) and equivalent conductance at infinite dilution (λ_{∞}) .	
8	Determination of dissociation constant (K _a) of weak acid by potentiometrically.	
9	Determination of second order rate constant for the hydrolysis of ethyl acetate by NaOH conductometrically.	
10	Determination of dissociation constant of acetic acid by conductometrically.	
11	Verification of Beer- Lambert law by colorimetric method and determination of unknown concentration of ferric (Fe ³⁺) ions.	
12	Preparation of standard acidic buffer solutions using 0.1M acetic acid & 0.1M sodium acetate using Henderson-Hasselbatch and determination of mole ratio of buffer solutions of unknown pH	

NOTE: Selection of experiments may be done by the students based on the picking up of chits. Viva questions may be asked on any of the experiments prescribed in the practical syllabus. During practical examination chart is not allowed, wherever necessary simple procedure may be given.

Distribution of Marks:

Accuracy-10 marks, Technique and Presentation-2, Calculation and graph-5 marks, Journal-3 marks, Viva-Voce-5 marks, Total = 25 marks.

Deduction of Marks for accuracy:

Error up to 5% - 10 marks, 6 - 10% 08 marks, 11-15% 06 marks, 16-20% - 04 marks, above 20% zero (0) marks

Recommended Books/References

- 1. Vogel's Qualitative Inorganic Analysis, G.Svehla, 7th Ed, Longman (2001).
- Advanced Practical Chemistry, Jagadamba Singh, R.K.P. Singh, Jaya Singh, L.D.S.Yadav, I.R. Siddiqui, Pragati prakashan, 7th edition, 2017.
- 3. College Practical Chemistry: V K Ahluwalia, Sunitha Dhingra and Adarsh Gulati. University Press-2011.
- 4. Advanced Practical Inorganic Chemistry, Gurdeep Raj, Goel Publishing House, Meerut.
- 5. Comprehensive Practical Organic Chemistry: V K Ahluwalia, and Renu Aggarwal, University Press-2000.
- 6. Findlay's practical physical chemistry -revised by levitt, Longman's, London,(1968).
- 7. Experiments in Physical chemistry Shoemaker and Garland, McGraw Hill International edn (1996).

B.Sc. Semester–V Skill Enhancement Course: SEC-3

Course Title: Employability skills in chemistry Course Code: 035CHE061

Type of	Theory		Instruction	Total No. of	Duration	Formative	Summative	TotalMa
Course	/Practical	Credits	hour/week	Lectures/Hours	of Exam	Assessment	assessment	rks
				/Semester		Marks	Marks	
SEC-3	Practical	02	04	56 hrs.	3hrs.	25	25	50

Employability skills in chemistry will have Paper A, B and C. Students will choose experiments either from Paper A or B or C but not mixture of all. Principal of the college can also suggest the selection of Paper based on availability of Chemicals, instruments etc.

Paper A: Separation techniques and pharmaceutical analysis

- 1. Separation of amino acids by paper chromatography and measuring R_f values.
- 2. Compare the aspirin prepared in the laboratory with the ingredients of an aspirin tablet by thin layer chromatography.
- 3. Separation of Co^{2+} and Ni^{2+} by paper chromatography and measuring R_f values.
- 4. Separation of Ni(II) and Fe(II) by complexation with DMG, extracting the Ni(II)-DMG complex in chloroform and determine its concentration by colorimetry.
- 5. Separation of amino acids from organic acids by ion exchange chromatography,
- 6. Separation of Mg (II) and Fe (II) by ion exchange chromatogrphy.
- 7. Determination of aspirin present in tablets conductometrically /titrimetrically
- 8. Determination cholesterol colorimetrically.
- 9. Determination of amino acids colorimetrically using ninhydrin.
- 10. Determination of Glucose /Sucrose colorimetrically using Fehling's Solution.
- 11. Preparation of magnesium bisilicate (Antacid)

Paper B: Industrial Chemistry

- 1. Safety practices in the Chemistry laboratory.
- 2. Determination of calcium in CAN fertilizer.
- Determination of water of crystallization and Fe (II) in Mohr's salt by titrating with standard KMnO₄.
- 4. Preparation of phenol formaldehyde Resin.
- 5. Preparation of urea formaldehyde resin.
- 6. Nitration of salicylic acid by green method (Using calcium nitrate and acetic acid).
- 7. Preparation of aspirin from salicylic acid.
- 8. Analysis of Cement. (Moisture, Silica and Calcium (II))
- 9. Analysis of food adulterants in Tea Powder, Coffee Powder, turmeric powder, Chili Powder, oil / fat, milk, etc.
- 10. IR peak analysis for functional groups using recoded IR Spectra
- 11. Preparation and characterization of biodiesel from vegetable oil/waste cooking oil.

Paper C: Soil, Water and Food Analysis (With effect from 2024-25 and onwards)

- 1. Qualitative detection of nitrate, phosphate, Fe (II) and Ca (II) in soil samples.
- 2. Determination of pH of different types of soil samples.
- 3. Determination of total alkalinity of soil samples.
- 4. Determination of total organic matter in the given soil samples.
- 5. Determination of Ca (II) ions from soil samples.
- 6. Determination of TDS in water samples.
- Determination of chloride and sulfate of water samples by precipitation titration (AgNO₃ and K₂CrO₄).
- 8. Determination of pH, acidity and alkalinity of polluted water samples.
- 9. Qualitative analysis of carbohydrates, proteins and lipids (minimum to samples).
- 10. Determination of proteins colorimetrically using biuret reagent.

Examination

Selection of experiments may be done by the students based on the picking up of chits. Viva questions may be asked on any of the experiments prescribed in the practical syllabus.

Distribution of marks

 Preparation experiment: Reaction – 03 marks, Calculation of theoretical Yield- 02 mark, Observed yield-12 marks, Journal- 03 marks, Viva- voce – 05 marks, Total= 25 marks

Deduction of Marks for accuracy:

Less than 10% yield- 5 marks, 11-15%- 4 marks, 16-20%-3 marks, 21-25%- 2 marks, above 25%- zero marks

2. **Analysis experiments: a)** In the Analysis food adulteration, Identification of adulterants in each sample carries 4 marks. Four different samples may be given, 4 x 4 = 16 marks,

b) In the analysis cement, moisture content - 04 marks, Silica content - 6 marks and Calcium content - 6 marks = 16 marks

c) In the analysis of IR spectra, the spectra of 4 different compounds may be given. The analysis of each carries 4 marks, $4 \times 4 = 16$ marks

Systematic presentation = 1 mark, Journal-3 marks, Viva-Voce-5 marks, Total = 25 marks.

3. Determination experiments:

Accuracy-10 marks, Technique and Presentation-2, Calculation and reaction/graph-5 marks, Journal-3 marks, Viva-Voce-5 marks, Total = 25 marks.

Deduction of marks for accuracy:

Error up to 5% - 10 marks, 6 - 10% 08 marks, 11-15% 06 marks, 16-20% 04 marks, above 20% zero (0) marks

4. Chromatographic / Ion-exchange Techniques Distribution of Marks:

- a. Preparation of paper chromatography / Column for ion-exchange method: 8 marks
- b. Spotting : 03 marks, Identification of Spots: 03 marks, R_f Calculation: 03 marks
- c. Separation by ion-exchange and determination: 09 marks
 Journal 03 marks, Viva-Voce-5 marks
 Marks for Accuracy: Error up to 10% -17 marks, 11-15%- 14 marks, 16-20%- 10 marks, 21-25%

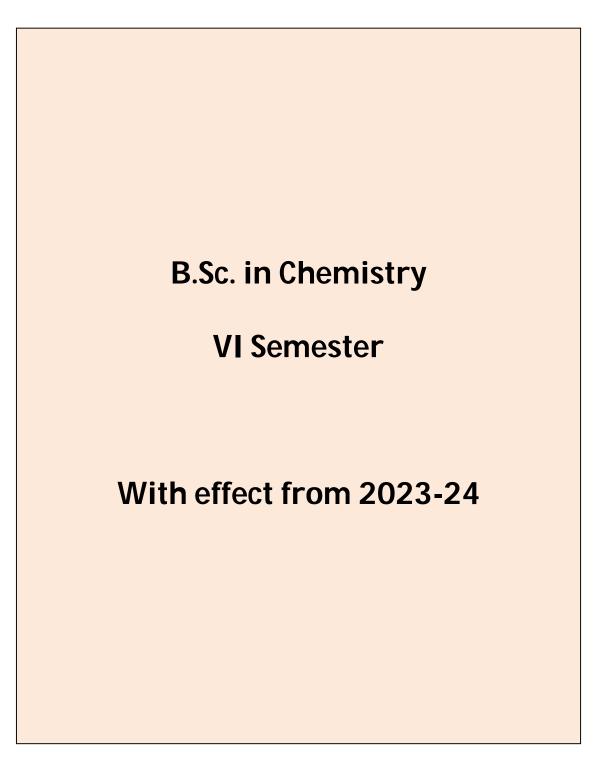
- 07 marks, 26 - 30 % - 05 marks and above 30% nil.

References

- 1. Vogel's Qualitative Inorganic Analysis, G.Svehla, 7th Ed, Longman (2001).
- Advanced Practical Chemistry, Jagadamba Singh, R.K.P. Singh, Jaya Singh, L.D.S. Yadav, I.R. Siddiqui, Pragati prakashan, 7th edition, 2017.
- 3. College Practical Chemistry: V K Ahluwalia, Sunitha Dhingra and Adarsh Gulati. University Press-2011.
- 4. Advanced Practical Inorganic Chemistry, Gurdeep Raj, Goel Publishing House, Meerut.
- 5. Comprehensive Practical Organic Chemistry: V K Ahluwalia, and Renu Aggarwal, University Press-2000.
- 6. Findlay's practical physical chemistry -revised by Levitt, Longman's, London,(1968)
- 7. Experiments in Physical chemistry Shoemaker and Garland, McGraw Hill International Edn (1996)

Inorganic Chemistry

- 1. Lee, J.D. Concise Inorganic Chemistry ELBS, 1991.
- 2. Cotton, F.A., Wilkinson, G. & Gaus, P.L. Basic Inorganic Chemistry, 3 Ed., Wiley.
- 3. Douglas, B. E., Mc Daniel, D. H .& Alexander,
- 4. J. J.Concepts and Models in Inorganic Chemistry, John Wiley& Sons.
- 5. Huheey, J. E., Keiter, E.A., Keiter, R.L. & Medhi, O. K. Inorganic Chemistry: Principles of Structure and Reactivity, Pearson Education India, 2006.
- 6. Shriver, D.F.& Atkins, P.W. Inorganic Chemistry, Oxford University Press.
- 7. Wulfsberg, G. Inorganic Chemistry, Viva Books Pvt.Ltd.
- 8. Rodgers, G. E. Inorganic & Solid-State Chemistry, Cengage Learning India Ltd., 2008.
- 9. G.L. Miessler & Donald A. Tarr: Inorganic Chemistry, Pearson Publication.
- 10. Mahan, B.H. University Chemistry3rd Ed. Narosa (1998).
- 11. Petrucci, R.H. General Chemistry 5th Ed. Macmillan Publishing Co., New York (1985).


Organic Chemistry

- 1. Organic Chemistry-P. Y. Bruice, 7th Edition, Pearson Education Pvt. Ltd., New Delhi (2013).
- 2. Heterocyclic Chemistry- R. K. Bansal, 3rd Edition, New- Age International, New Delhi, 2004.
- 3. McMurry, J. E. Fundamentals of Organic Chemistry,7thEd. Cengage Learning India Edition, 2013.
- 4. Sykes, P.A Guidebook to Mechanism in Organic Chemistry, Orient Longman, New Delhi (1988).

- 5. Stereochemistry-Conformation and Mechanism-P. S. Kalsi, Wiley-Eastern Ltd, New Delhi.
- 6. Morrison, R.T.&Boyd, R.N.OrganicChemistry, Pearson, 2010.
- 7. Bahl, A.&Bahl, B.S. Advanced Organic Chemistry, S. Chand, 2010.
- 8. Graham Solomons, T. W., Fryhle, C. B. & Snyder, S.A. Organic Chemistry, John Wiley & Sons (2014).
- 9. Organic Chemistry Volume-I, II- I. L. Finar, 6th Edition, ELBS London (2004).
- 10. Organic Chemistry-F. A. Carey, 4th Edition, McGraw Hill (2000).
- 11. Modern Organic Chemistry R.O.C. Norman and D.J. Waddington, ELBS, 1983.
- 12. Understanding Organic reaction mechanisms A. Jacobs, Cambridge Univ. Press, 1998.
- 13. Organic Chemistry L. Ferguson, Von Nostrand, 1985.
- 14. Organic Chemistry M. K. Jain, Nagin & Co., 1987.
- 15. Organic Chemistry- Mehta and Mehta, 2005.

Physical Chemistry

- 1. Text Book of Physical Chemistry P. L. Soni, S. Chand & Co., 1993.
- 2. Fundamental of electrochemistry by Vladimir S. Bagotsky · 2005
- 3. An introduction to electrochemistry by Samuel Glasstooe 2011
- 4. Photochemistry by Gurdeep Raj, 5th edition -2008
- 5. Principles of Physical Chemistry B. R. Puri, L. R. Sharma and M. S. Patania, 1987.
- 6. The Elements of Physical Chemistry (3rd edition) Peter Atkins, Oxford Univ. Press, 2000
- 7. Essentials of Physical Chemistry by Bahl and Bahl, Revised edition-2009
- 8. Polymer Science. V. R. Gowariker, Viswanathan jayadev Sreedhar 2nd edition-2015
- 9. Text Book of Polymer Science Bilmeyer, Jr. F.W. John Wiley & Sons, 1984

B.Sc. Semester–VI

Discipline Specific Course (DSC)-13

Course Title: Chemistry (Theory) XIII

Course Code:036CHE011

Type of	Theory		Instruction	Total No. of	Duration	Formative	Summative	Total
Course	/Practical	Credits	hour per week	Lectures/Hours	of Exam	Assessment	assessment	Marks
				/Semester		Marks	Marks	
DSCC-13	Theory	04	04	56hrs.	2hrs.	40	60	100

Course Outcomes (COs): At the end of the course students will be able to:

- CO1: Understand Crystal field theory, crystal field splitting, calculation and comparison of CFSE in octahedral, tetragonal, tetrahedral and square planar complexes.
- CO2: Study the Stability of metal complexes (thermodynamic and kinetic), stepwise and overall stability constant and their relationship. Factors affecting the stability of metal complexes.
- CO3: Learn the structure and constitution of Carbohydrates, Ring Size determination and properties, Structures of disaccharides and polysaccharides and biological importance.
- CO4: Study the classification of amino acids, stereochemistry of amino acids. Zwitter ion and explanation to isoelectric point, Synthesis of amino acids and diptides, biological importance, primary, secondary structure of proteins (α-helical, β-sheet), classification, isoprene rule, special isoprene rule constitution and synthesis of citral and α-terpinol.
- CO5: Describe the Role of metal ions in biological systems with special reference to Na⁺, K⁺ and Mg²⁺ ions. Na/K pump and Structure of hemoglobin, myoglobin and chlorophyll.
- CO6: Know the Solvent properties and typical reactions in liquid ammonia and liquid Sulphur dioxide.
- CO7: Distinguish between reversible and irreversible cells. Concept of EMF and its measurement.
- CO8: Describing the electrode potential, types, applications for pH and EMF determinations.
- CO9: Explaining free energy change for ideal solution, theory of distillation process for separating liquid mixtures.
- CO10: Distinguish between miscible and immiscible liquids. Explain the critical solution

temperature, liquid-solid solution, solid solutions.

CO11: Learn to develop and demonstrate knowledge pertaining to the background and development of Green Chemistry, Learn about green chemistry and its necessity, choice of solvents, atom economy, and sustainable raw materials, about the examples of green reactions and future trends in green reaction.

Unit	Title: Chemistry (Theory) XIII	56 hrs/ Sem
	Coordination Chemistry-II	14 hrs
UnitI	Crystal field theory, crystal field splitting, calculation and comparison of CFSE	
Uniti	in octahedral and tetrahedral complexes, crystal field effects in weak and strong	
	field ligands. Pairing energies. Factors affecting the magnitude of crystal field	
	splitting. Spectrochemical series. Tetragonal distortion of octahedral geometry,	
	John Teller distortion. Crystal field splitting in square planar complexes.	
	Explanation of color and magnetic moments of complexes. Determination of	
	magnetic susceptibility by Gouy's method. Stability of metal complexes	
	(thermodynamic and kinetic), stepwise and overall stability constant and their	
	relationship. Factors affecting the stability of metal complexes. (8 hrs)	
	Bioinorganic Chemistry	
	Role of metal ions in biological systems with special reference to Na^+ , K^+ and	
	Mg^{2+} ions. Na/K pump. Structures of hemoglobin and chlorophyll, and the role	
	of Fe(II) and Mg(II) metal ions in these pigments. Role of Ca^{2+} in blood	
	clotting. (3 hrs)	
	Non-aqueous solvents	
	Solvent properties and typical reactions studied in liquid ammonia and liquid	
	sulphur dioxide. (3 hrs)	
	Carbohydrates:	14 hrs
	Definition, classification, osazone formation and its mechanism, epimers and	
UnitII	epimerization, interconversion of fructose and glucose, Kiliani synthesis and	
	Ruff degradation, ring structure of D-glucose, mutarotation, and determination	
	of ring size of D-glucose by Haworth -Hirst method, conformational analysis	
	of monosaccharides (example: Glucose). Disaccharides: structure of sucrose	
	and lactose (mention hydrolysis product, glycoside linkage and reducing	
	properties). Polysaccharides: partial structure of starch and cellulose.	
	Photosynthesis of carbohydrates. (8 hrs)	

	Amino Acids, Peptides and Terpenes:	
	Classification of amino acids, stereochemistry of amino acids, Zwitter ion and	
	explanation to isoelectric point, synthesis of amino acids from Gabriel	
	phthalimide synthesis, Strecker's synthesis, ninhydrin reaction.	
	Peptides: Definition, synthesis of dipeptides by N-protecting (t-	
	butoxycarbonyl and phthaloyl) & C-activating groups. Overview of Primary,	
	Secondary, Tertiary and Quaternary structure of proteins.	
	Terpenes: Classification, isoprene rule, constitution and synthesis of Citral and	
	oc-terpinol (6 hrs)	
	Electrochemistry-II	14 hrs
UnitIII	Electro Motive Force(EMF)	
	Electrochemical cells, Reversible and irreversible cells, EMF of a cell and its	
	measurement by potentiometer, standard cell (Weston standard cell), types of	
	electrodes, reference electrode- calomel electrode, sign conventions, Nernst	
	equation, electrochemical series and its applications, salt bridge and its	
	applications. Determination of pH of solution by hydrogen electrode,	
	quinhydrone electrode and glass electrode methods, concentration cell with and	
	without transference, liquid junction potential. Numerical problems.	
	Applications of EMF measurements-	
	i) Determination of solubility and solubility product of sparingly soluble salts.	
	ii) Potentiometric titrations- acid-base and redox titrations,	
	iii) Determination of redox potential (7hs)	
	Energy sources: Non-conventional energy sources. Solar energy, thermal	
	energy, wind energy, geothermal energy, photovoltaic cells, biofuels and their	
	applications. Batteries & Fuel cells- Primary and secondary batteries –	
	Construction and Applications of Pb-acid battery, Li-Battery, Lithium-polymer	
	cell, and nickel-cadmium cell. Fuel cells-hydrogen-oxygen and Hydrocarbon-	
	Oxygen fuel cells and their applications. (4hrs)	
	Micelle: Emulsions, micro emulsions or micellar emulsions, and its stability,	
	properties of micro emulsions: electro kinetic effects. Colloidal electrolytes or	
	association colloids, types of colloidal electrolytes. Micelles: surface-active	
	agents or surfactants. (3 hrs)	

UnitIV	Green Chemistry	14 hrs
	Basics of Green Chemistry. Need for Green Chemistry. Goals of Green	
	Chemistry. Limitations/ Obstacles in the pursuit of the goals of Green	
	Chemistry.	
	Twelve principles of Green Chemistry with their explanations and examples and special emphasis on the following: Designing a Green Synthesis using these principles; Prevention of Waste/ byproducts; maximum incorporation of the materials used in the process into the final products , Atom Economy, calculation of atom economy of the rearrangement, addition, substitution and elimination reactions. Prevention/ minimization of hazardous/ toxic products reducing toxicity. risk =	
	(function) hazard \times exposure; waste or pollution prevention hierarchy.	
	Green solvent	
	Supercritical fluids, water as a solvent for organic reactions, ionic liquids,	
	fluorous biphasic solvent, PEG, solvent less processes, immobilized solvents	
	and how to compare greenness of solvents.	
	Energy requirements for reactions - alternative sources of energy: use of	
	microwaves and ultrasonic energy. (8hrs)	
	Examples of Green Synthesis/ Reactions	
	Green Synthesis of the following compounds: adipic acid, catechol, disodium iminodiacetate (alternative to Strecker synthesis)	
	Microwave assisted reactions in water: Hofmann Elimination, methyl benzoate to benzoic acid, oxidation of toluene and alcohols; Microwave assisted reactions in organic solvents Diels-Alder reaction and Decarboxylation reaction.	
	Ultrasound assisted reactions: Sono chemical Simmons-Smith Reaction (Ultrasonic alternative to Iodine). (6hrs)	

FormativeAssessmentforTheory						
AssessmentOccasion/type	Marks					
InternalAssessmentTest1	10					
InternalAssessmentTest2	10					
Quiz/Assignment/SmallProject	10					
Seminar	10					
Total	40Marks					
Formative Assessment as per g	uidelines.					

B.Sc. Semester–VI

Discipline Specific Course(DSC)-14

Course Title: Chemistry (Practical) XIV Course Code:036CHE012

Type of	Theory		Instruction	Total No. of	Duration	Formative	Summative	Total
Course	/Practical	Credits	hour per week	Lectures/Hours	of Exam	Assessment	assessment	Marks
				/Semester		Marks	Marks	
DSCC-14	Practical	02	04	56 hrs.	3 hrs.	25	25	50

ORGANIC CHEMISTRY EXPERIMENTS

Course Outcomes (COs): At the end of the course, students will be able to:

CO1: Qualitative analysis of solid – solid organic mixtures, Identification, nature and separation of mixture. Analysis of any one separated compound through preliminary tests, element test, physical constant, functional Group test and preparation of suitable derivative and its physical constant, distillation of Liquid-Liquid mixtures containing low boiling and high boiling liquids and their analysis.

Expt.	ORGANIC CHEMISTRY EXPERIMENTS	56hrs /
No.		Sem
1	Qualitative analysis of solid – solid organic binary mixtures and liquid-liquid	
	binary mixture (by distillation)	
	Identification, nature and separation of mixture. Analysis of any one of the separated	
	compound or a fresh compound through preliminary tests, element test, physical	
	constant, functional group test and preparation of suitable derivative and its physical	
	constant.	
	Acids: Salicylic, Cinnamic and Phthalic.	
	Phenol: β–naphthol.	
	Base: m-nitroaniline and p-nitroaniline.	
	Neutral: Naphthalene, Acetanilide, Benzamide.	
	Low Boiling: Ethyl acetate, acetone	
	High Boiling: Phenol, aniline, acetophenone, toluene	
	NOTE: In a batch of ten students, not more than two students should get the same	
	mixture in the practical examination. Preparation of derivative is not needed at the	
	time of examination. Viva questions may be asked on any of the experiments	

prescribed in the practical syllabus. During pr	ractical examination chart is not
allowed.	
Distribution of marks:	
Nature and Separation: (5 marks), Preliminar	y test and Elemental analysis test:
(4marks),	
Physical Constant:(3 marks), Functional Gro	up test (5 marks),
Journal: (3marks), Viva-voce: (5marks).	Total 25marks

Recommended Books/References

- 1. Vogel's Qualitative Inorganic Analysis, G. Svehla, 7th Ed, Longman (2001).
- Advanced Practical Chemistry, Jagadamba Singh, R.K.P. Singh, Jaya Singh, L.D.S. Yadav, I.R. Siddiqui, Pragatiprakashan, 7th edition, 2017.
- College Practical Chemistry: V K Ahluwalia, SunithaDhingra and AdarshGulati. University Press-2011.
- 4. Advanced Practical Inorganic Chemistry, Gurdeep Raj, Goel Publishing House, Meerut.
- 5. Comprehensive Practical Organic Chemistry: V K Ahluwalia, and RenuAggarwal, University Press-2000.

B.Sc. Semester–VI Discipline Specific Course (DSC) -15

Course Title: Chemistry (Theory) XV Course Code:036CHE013

Course	/Practical	Credits	hour per week	Lectures/Hours	of Exam			Marks
DSCC-15	Theory	04	04	/Semester	2 hrs.	Marks 40	Marks 60	100

Course Outcomes (COs): At the end of the course, students will be able to:

- CO1: Understand manufacture, applications and hazards in handling of chemicals and preparation, properties and uses of useful chemicals and complexes
- CO2: Know nuclear particles, nuclear instability, nuclear fission and fusion, nuclear reactors, nuclear reactions and applications of radioisotopes
- CO3: Learn about requirement of an ideal drug and classification, Synthesis and therapeutic uses of different chemotherapeutic agents.
- CO4: Understand basic principles of PMR, molecular structure signals, interpretation of PMR structure of simple organic molecules, principle, instrumentation, definitions of parent peak and base peak.
- CO5: Explain the spectral distribution of block body radiation, Plank's radiation law, Photoelectric effect, Compton effect.
- CO6: Describing Schrödinger's wave equation, wave functions, Eigen function and Eigen values, normalization and orthogonality
- CO7: Interpretation of equations of motion, elementary wave motion and operators.
- CO8: Derive expression of Solutions of Schrödinger equations of a free particle, particle in a box.
- CO9: Explain the dimensions, degeneracy, reflection and penetration of a particle in a one dimensional box of semi-infinite barrier, a particle in a box of finite walls.
- CO10: Understand instrumental technique, methodology and applications of Flame Emission Spectroscopy, Atomic Absorption Spectroscopy, Thermal methods of analysis Electrogravimetry. Nephelometry and Turbidimetry

Unit	Title: Chemistry (Theory) XV	56.hrs/ Sem
	Inorganic chemicals	14 hrs
Unit I	Manufacture, applications and hazards in handling of hydrochloric acid, caustic	
e int i	soda and bleaching powder. Preparation, properties and uses of TiO_2 , V_2O_5 ,	
	$PbCrO_4, KMnO_4, (NH_4)_2MoO_4 and complexes of platinum. $ (7hrs)	
	Nuclear chemistry	
	Nuclear particles (positron, neutrino, mesons, pions, and quarks), nuclear	
	instability, nuclear fission and fusion, nuclear reactors, Different types of nuclear	
	reactors, nuclear reactions (α, n) , (n, α) , (α, p) , (p, α) , (p, n) and (n, p) . Applications	
	of radioisotopes in tracer technique, neutron activation analysis and carbon dating	
	(numerical problems). (7hrs)	
	Drugs	14 hrs
Unit II	Definition and classification, requirement of an ideal drug, synthesis and	
	therapeutic use of a) Analgesic and antipyretic: Paracetamol, Analgin, ibuprofen	
	and diclofenac sodium, b) Antibacterial: Sulphadiazineand sulphathiazole, c)	
	Antimalarial: Chloroquine, d) Antibiotic:Chloramphenicol, e) Tranquilizers:	
	mysoline and pentothal sodium, f) Local anesthetics: novacaine,	
	g) Antihistamines: Chlorpheniraminemaleate, cetirizine, HCl. (5 hrs)	
	Basics of ¹ H NMR Spectroscopy	
	Introduction to magnetic properties of nuclei, concept of nuclear spin: Spin of	
	protons and neutrons, nuclear quantum number for various nuclei (depending	
	upon mass and charge of nuclei, $I = 0$, $\frac{1}{2}$, 1, $\frac{3}{2}$, nuclear angular momentum	
	and magnetic momentum, interaction of magnetic nuclei with applied magnetic	
	field, Larmor precession, nuclear energy levels in applied magnetic fields,	
	concept of resonance and expression for energy, concept of chemical shift,	
	shielding and deshielding effect, typical chemical shift values for different class	
	of compounds, anisotropic effects.	
	Applications of NMR spectroscopy: Interpretation of spectrum of ethyl bromide,	
	ethanol, acetone, 2-chloroethanol, acetaldehyde, ethyl acetate, propanamide,	
	benzene, acetophenone and acetanilide. (7 hrs)	
	Mass Spectrometry	
	Principle, instrumentation, molecular ion peak and base peak, McLaffertyrearrangementwithrespectto2-hexanone, hexenoic acid and methyl hexanoate. (2 hrs)	

	Quantum Chemistry: Black body radiation, Spectral distribution of black body	14 hrs				
	radiation, Plank's theory, derivation of Planck's radiation law, photoelectric					
Unit III	effect, Compton effect, wave nature of electron, derivation of Schrödinger's wave					
	equation, wave function and its significance, Eigen function and Eigen values,					
	normalization and orthogonality.					
	Equation of motion for a particle, Newtonian, Lagrangian and Hamiltonian					
	equations of motion, elementary wave motion. Operators, Eigen values and					
	expectation values, commuting operators, linear operator and Hermitian operators.					
	Solutions of Schrödinger equations of a free particle, particle in a box problem: in					
	one and three dimensions, degeneracy, reflection and penetration of a particle in a					
	one dimensional box of semi-infinite barrier, a particle in a box of finite walls.					
	Flame Emission Spectroscopy (FES): Principle, flames and flame temperature,	14 hrs				
Unit IV	instrumentation, interferences, applications, and limitations of FES. Determination					
	of Na/K in soil / water samples.					
	Atomic Absorption Spectroscopy (AAS): Principle, types of burners (premix and					
	total consumption) and their comparison, instrumentation and applications,					
	Determination of Mg in tap water. Comparison of AAS with FES.					
	Thermal methods of analysis:					
	Thermogrametric analysis (TGA), Theory, thermogravimetric curves for one, two					
	and three decomposition steps, instrumentation, factors affecting thermograms.					
	Applications of TGA.					
	Differential thermal analysis (DTA): Theory and applications					
	Differential scanning calorimetry (DSC): Theory and applications					
	Electrogravimetry: Theory, instrumentation. Determination of copper.					
	Nephelometry and Turbidimetry: Principle, instrumentation and applications.					

Formative Assessment for Theory					
Assessment Occasion/type	Marks				
Internal Assessment Test 1	10				
Internal Assessment Test2	10				
Quiz/Assignment/Small Project	10				
Seminar	10				
Total	40 Marks				
Formative Assessment as per g	uidelines.				

B.Sc. Semester–VI Discipline Specific Course (DSC)-16

Course Title: Chemistry (Practical) XVI Course Code:036CHE014

Type of	Theory		Instruction	Total No. of	Duration	Formative	Summative	Total
Course	/Practical	Credits	hour per week	Lectures/Hours	of Exam	Assessment	assessment	Marks
				/Semester		Marks	Marks	
DSCC-16	Practical	02	04	56hrs.	3hrs.	25	25	50
								1

Course Outcomes (COs): At the end of the course, students will be able to:

- CO1: Learn the complex preparation skills
- CO2: Understand the determination of contents of given organic compounds.
- CO3: Understand to apply the knowledge of conductivity, EMF and absorbance to performing the experiments.
- CO4: Acquire skills for handling analytical instruments like potentiometer, conductometer, pH meter & colorimeter.

DSCC -16: Chemistry (Practical) XVI (Code : 036CHE014)		
GENERAL CHEMISTRY EXPERIMENTS	52	
	rs	
SET-I		
1. Preparation of trans-potassium diaquadioxalatochromate (III)		
2. Preparation of tris(thiourea) copper (I) sulphate monohydrate		
3. Preparation of hexaamminecobalt(III) chloride		
4. Determination of glycine present in the given solution volumetrically		
5. Determination saponification value of oil/fat.		
6. Determination of iodine number of an oil/fat.		
SET-II		
 Determination of concentrations of given acids in a mixture (HCl + CH₃COOH) using the standard NaOH by conductometric titration method. Determination of solubility of sparingly soluble salt (BaSO₄/PbSO₄) conductometrically. 		
3. Determination of redox potentials of Fe^{3+}/Fe^{2+} using of $FeSO_4.7H_2O$ solution by		
potentiometric titration against the standard solution of K ₂ Cr ₂ O ₇		
4. Determination of solubility and solubility product of sparingly soluble salts (AgCl)		
potentiometrically.		
5. Determination of molecular weight of polymer by viscosity method.		
6. Determination of the composition of $\mbox{Fe}^{\mbox{\tiny 3+}}$ - salicylic acid complex solution by Job's		
method.		

Examination

In a batch of ten students in the practical examination, five students may be given SET–I experiments and remaining 5 students may be given SET-II experiments. In SET-I experiments one preparation and one determination experiment may be given. Selection of experiments may be done by the students based on the picking up of chits. Viva questions may be asked on any of the experiments prescribed in the practical syllabus.

Distribution of Marks:

SET-I

Preparation experiment: Reaction – 01 mark, Calculation of theoretical Yield- 01 mark, Observed yield-05 marks, = 07 marks

Determination Experiment: Accuracy - 06 marks, Technique and presentation- 02 marks, calculation- 02 marks = 10 marks,

Journal- 03 marks, Viva- voce – 05 marks, Total= 25 marks

Deduction of marks for accuracy:

Less than 10% yield- 5 marks, 11-15%- 4 marks, 16-20%-3 marks, 21-25%- 2

marks, above 25%- zero marks

 ± 0.4 cc- 6 marks, ± 0.6 cc- 04 marks, ± 0.8 cc-02 marks, ± 1 cc-01 marks, above ± 1 cc-Zero marks

SET-II

NOTE: Selection of experiments may be done by the students based on the picking up of chits. Viva questions may be asked on any of the experiments prescribed in the practical syllabus. During practical examination chart is not allowed, wherever necessary simple procedure may be given.

Distribution of Marks:

Accuracy-10 marks, Technique and Presentation-2, Calculation and graph-5 marks, Journal-3 marks, Viva-Voce-5 marks, Total=25 marks.

Deduction of Marks for accuracy:

Error up to 5% - 10 marks, 6 - 10% 08 marks, 11-15% 06 marks, 16-20% 04 marks, above 20% zero (0) marks

Recommended books

1. Findlay's practical physical chemistry -revised by Levitt, Longman's, London,(1968)

2. Experiments in Physical chemistry - Shoemaker and Garland, McGraw Hill International Edn. (1996)

B.Sc. Semester–VI INTERNSHIP

Course Title: Chemistry Internship

Course Code:036 CHE 091

Type of	Theory		Instruction	Total No. of	Duration	Formative	Summative	Total
Course	/Practical	Credits	hour/week	Lectures/Hours	of Exam	Assessment	assessment	Marks
				/Semester		Marks	Marks	
INTERNS	Practical	02				50	0	50
HIP								

Internship:

A course requiring students to participate in a professional activity or work experience, or cooperative education activity with an entity external to the education institution, normally under the supervision of an expert of the given external entity. A key aspect of the internship is induction into actual work situations for 2 credits. Internships involve working with local industry or private organizations, business organizations, artists, crafts persons, and similar entities to provide opportunities for students to actively engage in on-site experiential learning.

Note:

- 1. One credit internship is equal to 30hrs on field experience.
- 2. Internship shall be Discipline Specific of 45-60 hours (2 credits) with duration 1-2 weeks.
- 3. Internship may be full-time/part-time (full-time during last 1-2 weeks before closure of the semester or weekly 4 hrs in the academic session for 13-14 weeks). College shall decide the suitable method for programme wise but not subject wise.
- Internship mentor/supervisor shall avail work allotment during 6th semester for a maximum of 20 hours.
- 5. The student should submit the final internship report (45-60 hours of Internship) to the mentor for completion of the internship.
- 6. Method of evaluation: Presentations/Report submission/Activity etc.

Wherever internship is not feasible, the students can to choose the Project Work

Project Work: Plant training in industries/short term work in the College/other Institution:

The project work may include in Educational Institutions/R&D organizations/data mining/review of current literature/theoretical methods/ computer applications.

Experimental work may involve studies on synthesis/measurements/study of properties/ characterization/applications/activities for reported/unreported research or any suitable combination thereof. In case of the students who would work outside the campus, the Supervising Staff member may visit him/her/them.

References:

Inorganic Chemistry

- 1. Lee, J.D. Concise Inorganic ChemistryELBS, 1991.
- 2. Cotton, F. A, Wilkinson, G.&Gaus, P.L. BasicInorganicChemistry,3rdEd., Wiley.
- Douglas, B.E., Mc Daniel, D.H.&Alexander, J. J. Concepts and Models in Inorganic Chemistry, John Wiley & Sons.
- Huheey, J. E., Keiter, E.A., Keiter, R.L. & Medhi, O. K. Inorganic Chemistry: Principles of Structure and Reactivity, Pearson EducationIndia, 2006.
- 5. Shriver, D.F.&Atkins, P.W. Inorganic Chemistry, Oxford University Press.
- 6. Wulfsberg, G. Inorganic Chemistry, Viva Books Pvt. Ltd.
- 7. Rodgers, G. E. Inorganic & Solid State Chemistry, Cengage Learning India Ltd., 2008.
- 8. G.L. Miessler & Donald A. Tarr: Inorganic Chemistry, Pearson Publication.
- 9. Mahan, B.H. UniversityChemistry3rd Ed.Narosa(1998).
- 10. Petrucci, R.H. General Chemistry 5th Ed. Macmillan Publishing Co., New York (1985).

Organic Chemistry

- 1. Organic Chemistry-P. Y. Bruice, 7th Edition, Pearson Education Pvt. Ltd., New Delhi (2013).
- 2. Heterocyclic Chemistry- R. K. Bansal, 3rd Edition, New- Age International, New Delhi, 2004.
- 3. McMurry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning India Edition, 2013.
- 4. Sykes, P.A Guide book to Mechanism in Organic Chemistry, Orient Longman, New Delhi (1988).
- 5. Stereochemistry-Conformation and Mechanism-P. S. Kalsi, Wiley-Eastern Ltd, New Delhi.
- 6. Morrison, R.T.&Boyd, R.N. Organic Chemistry, Pearson, 2010.
- 7. Bahl, A.&Bahl, B.S. AdvancedOrganicChemistry, S. Chand, 2010.
- 8. Graham Solomons, T. W., Fryhle, C. B. & Snyder, S.A. Organic Chemistry, John Wiley& Sons(2014).
- 9. Organic Chemistry Volume-I, II- I. L. Finar, 6th Edition, ELBS London (2004).
- 10. Organic Chemistry-F. A. Carey, 4th Edition, McGraw Hill (2000).
- 11. Modern Organic Chemistry R.O.C. Norman and D.J. Waddington, ELBS, 1983.
- 12. Understanding Organic reaction mechanisms A. Jacobs, Cambridge Univ. Press, 1998.
- 13. Organic Chemistry L. Ferguson, Von Nostrand, 1985.
- 14. Organic Chemistry M. K. Jain, Nagin& Co., 1987.
- 15. Organic Chemistry- Mehta and Mehta, 2005.
- 16. William Kemp, NMR Chemistry A Multinuclear Introduction.
- 17. Clyden, Greeves, Warrens, and Wothers, Oraganic Chemistry, 1st Edition.
- 18. Robert M. Silverstain, Francis X Webster, David J Kiemel and David L Bryce, 18th edition.

Physical Chemistry

- 1. Text Book of Physical Chemistry P. L. Soni, S. Chand & Co., 1993.
- 2. Principles of Physical Chemistry B. R. Puri, L. R. Sharma and M. S. Patania, 1987.
- 3. The Elements of Physical Chemistry(3rd edition) Peter Atkins, Oxford Univ. Press, 2000
- 4. Essentials of Physical Chemistry by Bahl and Bahl, Revised edition-2009
- 5. Engineering Chemistry, P.C. Jain and Monika Jain, Dhanpad Rai and Sons, Delhi, Jalandhar, 1995.
- 6. Spectroscopy by H. Kaur, APragati edition-9th edition 2014.
- 7. Molecular structure and spectroscopy by G. Aruldhas, 2nd edition-2014
- 8. Basic Physical chemistry Walter J. Moore, Prentice Hall, 1972.

UG programme: 2023-24

GENERAL PATTERN OF THEORY QUESTION COURSE FOR DSCC/ OEC

(60 marks for semester end Examination with 2 hrs duration)

Part-A

1. Question number 1-06 carries 2 marks each. Answer any 05 questions : 10 marks

Part-B

2. Question number 07-11 carries 05Marks each. Answer any 04 questions : 20 marks

Part-C

3. Question number 12-15 carries 10 Marks each. Answer any 03 questions : 30 marks (Minimum 1 question from each unit and 10 marks question may have sub questions for 7+3 or 6+4 or 5+5 if necessary)

Total: 60 Marks

Note: Proportionate weightage shall be given to each unit based on number of hours Prescribed